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Abstract--- There have been several fascinating 

applications of Number Theory in Statistics. The purpose of 

this survey paper is to highlight certain important such 

applications. Prime numbers constitute an interesting and 

challenging area of research in number theory. Diophantine 

equations form the central part of number theory. An equation 

requiring integral solutions is called a Diophantine equation. 

In the first part of this paper, some problems related to prime 

numbers and the role of Diophantine equations in Design 

Theory is discussed. The contribution of Fibonacci and Lucas 

numbers to a quasi-residual Metis design is explained. A 

famous problem related to finite fields is the Discrete 

Logarithm problem. In the second part of this paper, the 

structure of Discrete Logarithm is discussed. 
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INTRODUCTION 

              

UMBER theory is perhaps the oldest branch of 

Mathematics and consequently there are several research  

areas within the realm of number theory. Techniques from 

other branches of knowledge may prove handy in solving 

some of the problems in number theory and vice versa. The 

aim of this paper is to stress the importance of inter- 

disciplinary approach in research, especially the linkages 

between number theory and Statistics. Certain specific 

problems are discussed to illustrate the applications of number 

theory in Statistics and to bring out the scope of inter- 

dependence of the two subjects. 

 
PRIME NUMBERS 

For detailed account of prime numbers, one may refer 

P.Ribenboim. The most perplexing behaviour of integers is 

that of prime numbers. In spite of the best efforts put in by 

different researchers, understanding the several properties of 

prime numbers continues to pose insurmountable difficulties. 

This is due to the variations in the properties possessed by 

prime numbers. The distribution of primes is a fascinating area 

of research. 

Let   denotes the number of prime’s not exceeding x. 

We have the following table of values: 
 

x 1 2 3 4 5 6 7 8 9 10 
 

 0 1 2 2 3 3 4 4 4 4 

 
 

 

 

x 11 12 13 14 15 16 17 18 19 20 
 

 5 5 6 6 6 6 7 7 8 8 

 
Let denote the nth prime. With this notation, we have 

  (1) 

The following are well known results on primes: 

    Prime number theorem: The number of prime’s not 

exceeding x is asymptotic to . 

    Tchebychef’s theorem: The order of magnitude of 

 is . 

An interesting question is to find how the prime pair’s p, 

p+2 are distributed. 

 
THE POLYNOMIAL OF EULER 

There have been several attempts by researchers to find out 

polynomials which would yield prime numbers only. 

Leonhard   Euler   (1707-1783)    considered    the   

polynomial  where x is presumed to take 

integral values only. Surprisingly, this polynomial takes 

integral values only for several consecutive integral values of 

x, starting from 0, as shown in the following tables: 
 

x 0 1 2 3 4 5 6 7 8 9 10 

f(x) 
4 
1 

4 
3 

4 
7 

5 
3 

6 
1 

7 
1 

8 
3 

9 
7 

11 
3 

13 
1 

15 
1 

 

x 
1 
1 

12 13 14 15 16 17 18 19 20 

 

f(x) 
1 
7 
3 

19 

7 

22 

3 

25 

1 

28 

1 

31 

3 

34 

7 

38 

3 

42 

1 

46 

1 

 

x 
2 
1 

22 23 24 25 26 27 28 29 30 

 

f(x) 

5 

0 
3 

54 

7 

59 

3 

64 

1 

69 

1 

74 

3 

79 

7 

85 

3 

91 

1 

97 

1 

 

x 31 32 33 34 35 36 37 38 39 

f(x) 
10 

33 

109 

7 

116 

3 

123 

1 

130 

1 

137 

3 

144 

7 

152 

3 

164 

1 

 
However,  when  x  =  40,  we  have  f(x)  =   +40+41= 

40(40+1)+41 = , associating a composite value for f(x). 

Euler’s polynomial is an example to show that there cannot be 

a polynomial taking prime values only. 
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Similar to Euler’s polynomial, the following polynomials 

also assume prime values only for the consecutive values of x 

provided within parentheses. 

+11 (x=0, 1,...,10), +29 (x=0, 1,...,28), +x+17 (x=0, 

1,...,15), +39x+37 (x=0, 1,...,17), +4x+59 (x=0, 

1,...,13), + +17 (x=0, 1,...,10) +29 +101 (x=0, 

1,...,19). 

When x is a natural number, it has been proved that no 

polynomial f(x) with integral coefficients, not a constant, can 

be prime for all x, or for sufficiently large x (see for e.g. G.H. 

Hardy and E.M. Right). 

We observe that it would be an interesting problem to find 

out probabilistic estimates of consecutive prime (or 

composite) values assumed by Euler’s polynomial for x > 39 

or the other polynomials specified above for x exceeding the 

specified integral value. 

 Some Unsolved Problems Pertaining To Primes 

    Are there infinitely many primes given by the 

polynomial                    ? 

    Is there always a prime between and ? 

It is worthwhile to try the above problems with 

probabilistic approach. 

 

A PROBLEM RELATED TO EULER’S ARITHMETIC 

FUNCTION 

Let n be a given natural number> 1. Euler’s Ø-function 

associates with n the number of positive integers less than 

and prime to n. By convention,  is taken as 1. We 

have the 
following table of values: 

 

n 1 2 3 4 5 6 7 8 9 10 

Ø(n) 1 1 2 2 4 2 6 4 6 4 

 

X 600 700 800 900 1000 

A(x) 1174 1357 1569 1759 1941 

   1.957 1.939 1.961 1.954 1.941 

He conjectured  that     has a finite limit of 1.9435964...   

as . In [1], he has presented several techniques to obtain 

the estimates for the error term in . 

 

DIOPHANTINE EQUATIONS 

An equation requiring integral solutions is called a 

Diophantine equation. Diophantus of Alexandria was 

interested in the integral solutions of algebraic equations and 

hence the nomenclature of Diophantine equations. These 

equations form the central part of number theory. A standard 

reference for Diophantine equations is L.J. Mordell. 

 Square-Free Natural Number 

A natural number n is said to be square-free if it is not 

divisible by the square of a number > 1. Therefore n is square- 

free if and only if it is the product of distinct primes. 

An interesting problem is to determine the probability that 

a given natural number n is square-free. Gauss observed that 

the probability that two integers should be relatively prime 

is . The probability that a number should be square-free is 

(see for e.g. G.H. Hardy and E.M. Right). 

 Pell’s Equation 

Let D be a given square-free natural number. The equation 

  (4) 

is known as Pell’s equation. For a given square-free natural 

number d, this equation always has integer solutions in x and y 

and the number of solutions is infinite. Other general forms of 

Pell’s equation are 

 

 

Consider the prime 

 

 

factorization 

 

 

of n. If 

 

 

 ... 

                         and (5) 
 

  (6) 

where p, q ... are distinct primes, then 
 

 

 
    

 

(2) 

where N is a non-zero integer. These general forms may not 

possess integral solutions for a given N or a square-free D. It 

is of interest to note that Pell’s equation for a special value of 

P.T. Bateman [1] considered the distribution of values of 

Euler’s Ø-function. He took      as the number of positive 

integers n with     =    and defined the function 

        . (3) 
 

i.e., is  the  number   of   positive   integer’s   n 

with        . He considered the function       . The following 

values were obtained by him: 
 

X 100 200 300 400 500 

A(x) 198 395 588 790 971 

   1.980 1.975 1.960 1.975 1.942 

D is related to a Design as brought out in the sequel. 

 
DESIGN THEORY 

An important branch of Statistics is Design Theory. A 

design can be thought of as a point in    The parameters 

associated  with a design form a  quintuple (v,  b, r, k,  as 

descrfibed below: 

Let V denote a finite set consisting of v elements. By a 

block we mean a subset of V. We consider b blocks. It is 

assumed that each element of V is in r blocks where r b. We 

refer to r as the replication number of the design. Let k denote 

the number of varieties in each block. It is assumed that every 

pair elements of V appears together  in   blocks where      b.  

The number  is called the co-valency for the design. The 

following relations hold for the parameters of the design: 

n 11 12 13 14 15 16 17 18 19 20 

Ø(n) 10 4 12 6 8 8 16 6 18 8 

 

http://www.jetir.org/


© 2021 JETIR September 2021, Volume 8, Issue 9                                                               www.jetir.org (ISSN-2349-5162) 

 

JETIR2109406 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org e100 
 

(7) 
 

                                                 (8) 
 

The contribution of number theory to designs will be 

considered in the sequel. Towards this purpose, we consider a 

special type of a design. 

A. Metis Design 

By a Metis design we mean a block design with parameter 

set (v, b, r, k,     satisfying the additional relation 

                                

The first few Fibonacci and Lucas numbers are furnished 

in the following table: 
 

s 0 1 2 3 4 5 6 7 8 

 

 0 1 1 2 3 5 8 13 21 

 

 2 1 3 4 7 11 18 29 47 

(9) 

B. Quasi-Residual Metis Design 

A quasi-residual Metis design has the additional property 

(10) 

Consider equations  (7)  through  (10).  From  (10)  we 

have .  Using  this  in  (8), we get . 

Substituting for v from (9), we obtain the relation 

                 (11) 

 

 

 

 
One can observe that the successive pairs of Fibonacci and 

Lucas numbers have the following property: 
 

Treating (11) as a quadratic equation in k, we are led to the 

relation 

 

 

These specific results prompt us to try an induction 

approach to have a general result. By induction we see that 
 

 
 

  

 
 

 

 

Since k cannot take negative values, we get 
 

 
 

 

 
(12) 

Thus the corresponding even subscripted terms in the 

Lucas and Fibonacci sequences satisfy the Pell’s equation (15) 

and consequently they lead to a quasi-residual Metis design. In 

view of this result, the parameters of a quasi-residual Metis 

In order that k assumes integral values, a necessary 

condition is that          is the square of a natural number. 

Let g denote the greatest common divisor of 5r+4 and r. Then 

g  4.  This implies that is a  square.  Hence  each one of 

and    shall be perfect squares. Considering modulo 4, it is 
  

seen that g cannot take the value of 2. Hence g = 1 or 4. In 

either case 5r+4 and r are both squares. Therefore there exist 

natural numbers x and y such that 

 and (13) 
 

(14) 
 

Thus we see that x and y are related by the following 

equation 

        (15) 
 

Equation (15)  is  the  Pell’s equation  – with 
D = 5 and N = 4.Thus a quasi-residual Metis design is related 
to the Pell’s equation. 

C. Relationship with Fibonacci and Lucas Numbers 

Fibonacci  numbers  {  }  and  Lucas  numbers  {  } are 

recursively defined as follows (see for e.g. G.H.Hardy and 

E.M.Right [3]). 

 

 

design are obtained in terms of the Lucas and Fibonacci 

numbers as: 
 

 
 

THE PROBLEM OF DISCRETE LOGARITHM 

Let p be an odd prime. The discrete logarithm problem is 

to find x = (y) in the finite field i.e., to find the value(s) 

x  in  such that y (mod p). No algorithm is currently 

available for this problem. There are applications of this 

problem in cryptography which is the subject of sending 

messages in a secret way, ensuring the security of the 

information (see for e.g., A.M.Odlyzko). The problem of 

mapping the discrete logarithm has been considered by 

D.Cloutier and J.Holden. The structure in the discrete 

logarithm has been studied by A.Hoffman. 

The discrete logarithm can be viewed as a function. The 

problem  is  to  determine  the  inverse of x (mod p). A 

functional graph may be used a tool for this problem. The 

values of x can be represented by nodes of a graph and arrows 

may be drawn for each one of the mappings. A functional 

graph is a directed graph such that each vertex must have 

exactly one edge directed out from it. An m-ary functional 

graph is a functional graph where each node has in-degree of 

exactly zero or m. 

s 9 10 11 12 13 14 15 

 

 34 55 89 144 233 377 610 

 

 76 123 199 322 521 843 1364 
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1 3 1 

1 8 

2 9 
 
 

1 

1 1 5 1 

9 

1 

1 

2 6 1 3 

1 7 1 

8 4 1 1 

Let us consider a few specific cases to illustrate the procedure 

involved. For the functional graph of 2 (mod 5), consider the 

successive integral powers of 2 and reduce them modulo 5. We 

have 

     2 (mod 5),     4 (mod 5),     3 (mod 5),     1 (mod 

5).Taking into account the exponent and the result after 

reducing modulo 5, we obtain the forward correspondence 
 

From this correspondence, we separate the cycles and get 

 . Each cycle is represented by 

means of a directed graph. The functional graph for this case 

and a few other examples are shown below. 
 

 

 

 

Functional graph for 2 (mod 5) Functional graph for 

4(mod 5) 
 

 
 

Functional graph for 7 (mod 13) 

 
 

 

 

 

Functional graph for 3 (mod 17) 

 

 

 
Functional graph for 5 (mod 19) 

In the functional graph for 4 (mod 5), the nodes 2 and 3 are not 

parts of any cycles. It is of interest to consider a functional 

graph wherein each node is part of a cycle. In this regard, we 

need the following: 

(16) Let r be an element of . Let e be the smallest natural 

number such that = 1 (mod p). We say that r is a primitive  root 

modulo p if . Let r be any primitive root 

modulo p  and  g  D. 

Cloutier 

and J. Holden [2] that the values of g that produce an m-ary 

graph are precisely those for which gcd (α, p-1) = m. 

(17) In the problem of discrete logarithm, A. Hoffman [4] has 

taken b as a primitive root modulo p and considered three 

parameters associated with a functional graph, viz. the number 

of cycles, the maximum cycle length and the weighted average 

cycle length. He has shown that the structure of discrete 

logarithm can be analysed by statistical investigation of these 

three parameters. He has illustrated how comparisons are 

possible between random permutations and those constructed 

from the solution to the discrete logarithm problem by 

considering the expected values of the three parameters in both 

cases. 

With the distribution of cycle lengths following Poisson 

distribution, has shown how ANOVA tests can be carried out 

for mean number of cycle components, number of components 

variance, mean maximum cycle length, maximum cycle 

variance, mean average cycle length and average cycle 

variance. Selecting 30 primes in the range 99991 – 106921 and 

employing t-test and Anderson-Darling test, he has derived the 

statistical results for the three parameters of the functional 

graphs concerning the primes to illustrate the structure in the 

discrete logarithm. 

 
CONCLUSION 

In the foregoing discussion, some of the linkages between 

Number Theory and Statistics have been furnished. There is 

much scope for probing into the applications of Number 

Theory in Statistics and vice versa. Distribution of prime 

numbers is a challenging area of research. When the 

parameters in a design become large, analysis of the design 

becomes quite complex and so one requires more 

computational skill. Understanding of the properties of primes 

and solving a discrete logarithm problem by means of 

functional graphs require high-end computing power. With the 

presently available computational capabilities due to 

technological development, the future research work holds 

promise and one may expect tangible results in this interesting 

field of research. 
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